Abstract
We classify singular Enriques surfaces in characteristic two supporting a rank nine configuration of smooth rational curves. They come in one-dimensional families defined over the prime field, paralleling the situation in other characteristics, but featuring novel aspects. Contracting the given rational curves, one can derive algebraic surfaces with isolated ADE-singularities and trivial canonical bundle whose Q_l-cohomology equals that of a projective plane. Similar existence results are developed for classical Enriques surfaces. We also work out an application to integral models of Enriques surfaces (and K3 surfaces).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.