Abstract
In this paper, a distributed dynamic traffic management model has been proposed to guide the vehicles, in order to minimize the computation time, make full use of real time traffic information and consequently improve the efficiency of the traffic system. For making the model work, we proposed a new dynamic route determination method, in which Q value-based Dynamic Programming and Sarsa Learning are combined to calculate the approximate optimal traveling time from each section to the destinations in the road networks. The proposed traffic management model is applied to the large scale microscopic simulator SOUND/4U based on the real world road network of Kurosaki, Kitakyushu in Japan. The simulation results show that the proposed method could reduce the traffic congestion and improve the efficiency of the traffic system effectively compared with the conventional method in the real world road network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.