Abstract

We use a variational principle to derive a mathematical model for a nematic electrolyte in which the liquid crystalline component is described in terms of a second-rank order tensor. The model extends the previously developed director-based theory and accounts for presence of disclinations and possible biaxiality. We verify the model by considering a simple but illustrative example of liquid crystal-enabled electro-osmotic flow (LCEO) around a stationary dielectric spherical particle placed at the center of a large cylindrical container filled with a nematic electrolyte. Assuming homeotropic anchoring of the nematic on the surface of the particle and uniform distribution of the director on the surface of the container, we consider two configurations with a disclination equatorial ring and with a hyperbolic hedgehog, respectively. The computed electro-osmotic flows show a strong dependence on the director configurations and on the anisotropies of dielectric permittivity and electric conductivity of the nematic characteristic of liquid crystal-enabled electrokinetics. Further, the simulations demonstrate space charge separation around the dielectric sphere, even in the case of isotropic permittivity and conductivity. This is in agreement with the induced-charge electro-osmotic effect described for isotropic electrolytes surrounding dielectric spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.