Abstract

Vortex lasers are an attractive prospect for efficient generation of high-quality beams in compact, environmentally robust, and turnkey systems. We demonstrate conversion of a Q-switched, diode-pumped Nd:YVO4, TEM00 Gaussian laser into a vortex laser source by replacing the output coupling mirror by a vortex output coupler (VOC) based on an imbalanced Sagnac interferometer. The Q-switched VOC laser generated a vortex output with 5.1 W average power, slope efficiency of 46% at 150 kHz pulse repetition rate, only marginally lower than the 5.4W and 49% slope efficiency of the plane mirror laser. Vortex handedness was switchable with a single VOC control without loss of vortex power. In both handedness cases, the vortex mode quality was assessed to be excellent by detailed analysis of the vortex phase profile and propagation characteristics and comparison to an ideal vortex. Further investigation verified the ability for the VOC laser to self-mode-filter the intracavity mode, showing maintenance of high TEM00 quality even after introducing deliberate mode to pump size mismatch, when the equivalent plane mirror laser becomes multimode. This work highlights the potential of the VOC as a simple route to high powered structured light sources using just standard high-power handling mirror components and its self-mode-filtering property to compensate intra-cavity spatial mode degradation when power-scaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.