Abstract
(Quantitative) structure activity relationship [(Q)SAR] modeling is the primary tool used to evaluate the mutagenic potential associated with drug impurities. General recommendations regarding the use of (Q)SAR in regulatory decision making have recently been provided in the ICH M7 guideline. Although (Q)SAR alone is capable of achieving reasonable sensitivity and specificity, reliance on a simple positive or negative prediction can be problematic. The key to improving (Q)SAR performance is to integrate supporting information, also referred to as expert knowledge, into the final conclusion. In the regulatory context, expert knowledge is intended to (1) maximize confidence in a (Q)SAR prediction, (2) provide rationale to supersede a positive or negative (Q)SAR prediction, or (3) provide a basis for assessing mutagenicity in absence of a (Q)SAR prediction. Expert knowledge is subjective and is associated with great variability in regards to content and quality. However, it is still a critical component of impurity evaluations and its utility is acknowledged in the ICH M7 guideline.The current paper discusses the use of expert knowledge to support regulatory decision making, describes case studies, and provides recommendations for reporting data from (Q)SAR evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.