Abstract
The generalisation of continuous orthogonal polynomial ensembles from random matrix theory to the q-lattice setting is considered. We take up the task of initiating a systematic study of the corresponding moments of the density from two complementary viewpoints. The first requires knowledge of the ensemble average with respect to a general Schur polynomial, from which the spectral moments follow as a corollary. In the case of little q-Laguerre weight, a particular \(_3 \phi _2\) basic hypergeometric polynomial is used to express density moments. The second approach is to study the q-Laplace transform of the un-normalised measure. Using integrability properties associated with the q-Pearson equation for the q-classical weights, a fourth-order q-difference equation is obtained, generalising a result of Ledoux in the continuous classical cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.