Abstract
We provide a relation between the geometric framework for q-Painlevé equations and cluster Poisson varieties by using toric models of rational surfaces associated with q-Painlevé equations. We introduce the notion of seeds of q-Painlevé type by the negative semi-definiteness of symmetric bilinear forms associated with seeds, and classify the mutation equivalence classes of these seeds. This classification coincides with the classification of q-Painlevé equations given by Sakai. We realize q-Painlevé systems as automorphisms on cluster Poisson varieties associated with seeds of q-Painlevé type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.