Abstract
As one of adaptive optimal controls, the Q-learning based supervisory control for hybrid electric vehicle (HEV) energy management is rarely studied for its adaptability. In real-world driving scenarios, conditions such as vehicle loads, road conditions and traffic conditions may vary. If these changes occur and the vehicle supervisory control does not adapt to it, the resulting fuel economy may not be optimal. To our best knowledge, for the first time, the study investigates the adaptability of Q-learning based supervisory control for HEVs. A comprehensive analysis is presented for the adaptability interpretation with three varying factors: driving cycle, vehicle load condition, and road grade. A parallel HEV architecture is considered and Q-learning is used as the reinforcement learning algorithm to control the torque split between the engine and the electric motor. Model Predictive Control, Equivalent consumption minimization strategy and thermostatic control strategy are implemented for comparison. The Q-learning based supervisory control shows strong adaptability under different conditions, and it leads the fuel economy among four supervisory controls in all three varying conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.