Abstract
This paper proposes a Q-learning based fault estimation (FE) and fault tolerant control (FTC) scheme under iterative learning control (ILC) framework. Due to the repetitive demands on control actuators for repetitive tasks, ILC is sensitive to actuator faults. Moreover, unknown faults varying with both time and trial axes pose a challenge to the control performance of ILC. This paper introduces Q-learning algorithm for FE to continuously adjust the estimator and adapt the changing faults. Then, FTC is designed by adopting the norm-optimal iterative learning control (NOILC) framework, where the controller is adjusted based on the FE results from Q-learning to counteract the influence of faults. Finally, the simulation on the plant of a mobile robot verifies the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.