Abstract
Similarity join is more and more important in many applications and has attracted wide-spread attention from scholars and communities. Similarity join has been used in many applications, such as spell checking, copy detection, entity linking, pattern recognition and so on. Actually, in many web and enterprise scenarios, where typos and misspellings often occur, we need to find an efficient algorithm to handle these situations. In this paper, we propose an improved algorithm on q-grams called q-grams-imp that is aimed at solving edit similarity join. We use this algorithm in order to reduce the number of tokens and thus reduce space costs, so it is fit best for same size strings. But for different sizes of strings, we need to handle these strings in order to fit for the algorithm. Finally, we conclude and get the results that our proposed algorithm is better than the traditional method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.