Abstract
The q-deformed loop gravity framework was introduced as a canonical formalism for the Turaev–Viro model (with ), allowing to quantize 3D Euclidean gravity with a (negative) cosmological constant using a quantum deformation of the gauge group. We describe its application to the 2-torus, explicitly writing the q-deformed gauge symmetries and deriving the reduced physical phase space of Dirac observables, which leads back to the Goldman brackets for the moduli space of flat connections. Furthermore it turns out that the q-deformed loop gravity can be derived through a gauge fixing from the Fock–Rosly bracket, which provides an explicit link between loop quantum gravity (for q real) and the combinatorial quantization of 3D gravity as a Chern–Simons theory with non-vanishing cosmological constant . A side-product is the reformulation of the loop quantum gravity phase space for vanishing cosmological constant , based on holonomies and fluxes, in terms of Poincaré holonomies. Although we focus on the case of the torus as an example, our results outline the general equivalence between 3D q-deformed loop quantum gravity and the combinatorial quantization of Chern–Simons theory for arbitrary graph and topology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.