Abstract
A novel metallic carbon allotrope, Q-carbon, was discovered using first-principles calculations. The named Q-carbon possessed a three-dimensional (3D) cage structure formed by carbon atoms with three ligands. The energy distribution of electrons in different orbitals revealed that Q-carbon has a low degree of s-p orbital hybridization. The calculated Li+ binding energies suggested Li+ aggregation inside Q-carbon during lithiation. As a result, a Li8C32 phase was formed and gradually expanded in Q-carbon, implying a typical two-phase transition. This allowed Q-carbon to have a constant theoretical voltage of 0.40 V, which effectively inhibited Li dendrite formation. A stable Li8C32/C32 two-phase interface was confirmed by stress-strain analysis, and a calculated Li+ diffusion barrier of ∼0.50 eV ensured effective Li+ diffusion along a 3D pathway. This study was of great significance for the understanding of two-phase transition of Li+ storage materials and provided a new insight into the design of new carbon materials for energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.