Abstract
A graph G is said to be borderenergetic (L-borderenergetic, respectively) if its energy (Laplacian energy, respectively) equals the energy (Laplacian energy, respectively) of the complete graph. Recently, this concept was extend to signless Laplacian energy (see Tao, Q., Hou, Y. (2018). Q-borderenergetic graphs. AKCE International Journal of Graphs and Combinatorics). A graph G is called Q-borderenergetic if its signless Laplacian energy is the same of the complete graph Kn; i.e., QE(G) = QE(Kn) = 2n - 2: In this paper, we investigate Q-borderenergetic graphs on the class of threshold graphs. For a family of threshold graphs of order n = 100; we find out exactly 13 graphs such that QE(G) = 2n- 2:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.