Abstract

Theoretical/computational description of excited state molecular dynamics is nowadays a crucial tool for understanding light‐matter interactions in many materials. Here we present an open‐source Python‐based nonadiabatic molecular dynamics program package, namely PyUNIxMD, to deal with mixed quantum‐classical dynamics for correlated electron‐nuclear propagation. The PyUNIxMD provides many interfaces for quantum chemical calculation methods with commercial and noncommercial ab initio and semiempirical quantum chemistry programs. In addition, the PyUNIxMD offers many nonadiabatic molecular dynamics algorithms such as fewest‐switch surface hopping and its derivatives as well as decoherence‐induced surface hopping based on the exact factorization (DISH‐XF) and coupled‐trajectory mixed quantum‐classical dynamics (CTMQC) for general purposes. Detailed structures and flows of PyUNIxMD are explained for the further implementations by developers. We perform a nonadiabatic molecular dynamics simulation for a molecular motor system as a simple demonstration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.