Abstract
Nowadays, improvements in diabetes detection that provide patients with vital information are needed. This is due to the fact that Diabetes mellitus has generated a worldwide epidemic that costs society and people. Also, patients tend to misread symptoms, and clinicians who collect insufficient data may produce erroneous outcomes. Therefore, this study aims to demonstrate that a programme that integrates expert advice such as decisions, recommendations, or solutions is an excellent method for reducing the incidence of diabetes. Specifically, this study intends to implement a fuzzy expert system that can detect and report the early stages of diabetes as a viable approach. Furthermore, since this programme is available to everyone, people may easily self-diagnose themselves if they have a blood glucose monitoring device. However, developing the fuzzy expert system for real-world situations, such as diabetes patients, using any programming tools is not straightforward. Therefore, this study will provide a comprehensive approach to constructing a fuzzy expert system using the popular programming language Python.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.