Abstract
To clinically advance the growing arsenal of radiometals available to image and treat cancer, chelators with versatile binding properties are needed. Herein, we evaluated the ability of the py2[18]dieneN6 macrocycle PYTA to interchangeably bind and stabilize 225Ac3+, [177Lu]Lu3+, [111In]In3+ and [44Sc]Sc3+, a chemically diverse set of radionuclides that can be used complementarily for targeted alpha therapy, beta therapy, single-photon emission computed tomography (SPECT) imaging, and positron emission tomography (PET) imaging, respectively. Through NMR spectroscopy and X-ray diffraction, we show that PYTA possesses an unusual degree of flexibility for a macrocyclic chelator, undergoing dramatic conformational changes that enable it to optimally satisfy the disparate coordination properties of each metal ion. Subsequent radiolabeling studies revealed that PYTA quantitatively binds all 4 radiometals at room temperature in just minutes at pH 6. Furthermore, these complexes were found to be stable in human serum over 2 half-lives. These results surpass those obtained for 2 state-of-the-art chelators for nuclear medicine, DOTA and macropa. The stability of 225Ac-PYTA and [44Sc]Sc-PYTA, the complexes having the most disparity with respect to metal-ion size, was further probed in mice. The resulting PET images (44Sc) and ex vivo biodistribution profiles (44Sc and 225Ac) of the PYTA complexes differed dramatically from those of unchelated [44Sc]Sc3+ and 225Ac3+. These differences provide evidence that PYTA retains this size-divergent pair of radionuclides in vivo. Collectively, these studies establish PYTA as a new workhorse chelator for nuclear medicine and warrant its further investigation in targeted constructs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.