Abstract

Scientists have long quantified empirical observations by developing mathematical models that characterize the observations, have some measure of interpretability, and are capable of making predictions. Dynamical systems models in particular have been widely used to study, explain, and predict system behavior in a wide range of application areas, with examples ranging from Newton’s laws of classical mechanics to the Michaelis-Menten kinetics for modeling enzyme kinetics. While governing laws and equations were traditionally derived by hand, the current growth of available measurement data and resulting emphasis on data-driven modeling motivates algorithmic approaches for model discovery. A number of such approaches have been developed in recent years and have generated widespread interest, including Eureqa (Schmidt & Lipson, 2009), sure independence screening and sparsifying operator (Ouyang, Curtarolo, Ahmetcik, Scheffler, & Ghiringhelli, 2018), and the sparse identification of nonlinear dynamics (SINDy) (Brunton, Proctor, & Kutz, 2016). Maximizing the impact of these model discovery methods requires tools to make them widely accessible to scientists across domains and at various levels of mathematical expertise.

Highlights

  • Scientists have long quantified empirical observations by developing mathematical models that characterize the observations, have some measure of interpretability, and are capable of making predictions

  • While governing laws and equations were traditionally derived by hand, the current growth of available measurement data and resulting emphasis on data-driven modeling motivates algorithmic approaches for model discovery

  • A number of such approaches have been developed in recent years and have generated widespread interest, including Eureqa (Schmidt & Lipson, 2009), sure independence screening and sparsifying operator (Ouyang, Curtarolo, Ahmetcik, Scheffler, & Ghiringhelli, 2018), and the sparse identification of nonlinear dynamics (SINDy) (Brunton, Proctor, & Kutz, 2016)

Read more

Summary

Introduction

Scientists have long quantified empirical observations by developing mathematical models that characterize the observations, have some measure of interpretability, and are capable of making predictions. A number of such approaches have been developed in recent years and have generated widespread interest, including Eureqa (Schmidt & Lipson, 2009), sure independence screening and sparsifying operator (Ouyang, Curtarolo, Ahmetcik, Scheffler, & Ghiringhelli, 2018), and the sparse identification of nonlinear dynamics (SINDy) (Brunton, Proctor, & Kutz, 2016). PySINDy is a Python package for the discovery of governing dynamical systems models from data.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call