Abstract
Cholesterol in the central nervous system has been increasingly found to be closely related to neurodegenerative diseases. Defects in cholesterol metabolism can cause structural and functional disorders of the central nervous system. The detection of abnormal cholesterol is of great significance for the cognition of physiological and pathological states of organisms, and the spatial distribution of cholesterol can also provide more clues for our understanding of the complex mechanism of disease. Here, we developed a novel pyrylium-based derivatization reagent combined with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to visualize cholesterol in biological tissues. A new class of charged hydroxyl derivatization reagents was designed and synthesized, and finally 1-(carboxymethyl)-2,4,6-trimethylpyridinium (CTMP) was screened for tissue derivatization of cholesterol. Different from the shortcomings of traditional hydroxyl labeling methods such as harsh reaction conditions and long reaction time, in our study, we combined the advantages of CTMP itself and the EDCl/HOBt reaction system to achieve instant labeling of cholesterol on tissues through two-step activation. In addition, we also reported changes in cholesterol content in different stages and different brain regions during disease development in SOD1 mutant mouse model. The cholesterol derivatization method we developed provides an efficient way to explore the distribution and spatial metabolic network of cholesterol in biological tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.