Abstract

A representative model of mitochondrial pyruvate metabolism was broken down into its extremal independent currents and compared with experimental data obtained from liver mitochondria incubated with pyruvate as a substrate but in the absence of added adenosine diphosphate. Assuming no regulation of enzymatic activities, the free-flow prediction for the output of the model shows large discrepancies with the experimental data. To study the objective of the incubated mitochondria, we calculate the conversion cone of the model, which describes the possible input/output behaviour of the network. We demonstrate the consistency of the experimental data with the model because all measured data are within this cone. Because they are close to the boundary of the cone, we deduce that pyruvate is converted very efficiently (93%) to produce the measured extramitochondrial metabolites. We find that the main function of the incubated mitochondria is the production of malate and citrate, supporting the anaplerotic pathways in the cytosol, notably gluconeogenesis and fatty acid synthesis. Finally, we show that the major flow through the enzymatic steps of the mitochondrial pyruvate metabolism can be reliably predicted based on the stoichiometric model plus the measured extramitochondrial products. A major advantage of this method is that neither kinetic simulations nor radioactive tracers are needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call