Abstract

The interaction between pancreatic cancer cells and pancreatic stellate cells plays a pivotal role in the progression of pancreatic cancer. Pyruvate kinase isozyme M2 is a key enzyme in glycolysis. Previous studies have shown that pyruvate kinase isozyme M2 is overexpressed in pancreatic cancer and that it regulates the aggressive behaviors of pancreatic cancer cells. To clarify the role of pyruvate kinase isozyme M2 in the interactions between pancreatic cancer cells and pancreatic stellate cells. Pyruvate kinase isozyme M2-knockdown pancreatic cancer cells (Panc-1 and SUIT-2 cells) and pancreatic stellate cells were generated by the introduction of small interfering RNA-expressing vector against pyruvate kinase isozyme M2. Cell proliferation, migration, and epithelial-mesenchymal transition were examined in vitro. The impact of pyruvate kinase isozyme M2 knockdown on the growth of subcutaneous tumors was examined in nude mice in vivo. Pyruvate kinase isozyme M2-kockdown pancreatic cancer cells and pancreatic stellate cells showed decreased proliferation and migration compared to their respective control cells. Pancreatic stellate cell-induced proliferation, migration, and epithelial-mesenchymal transition were inhibited when pyruvate kinase isozyme M2 expression was knocked down in pancreatic cancer cells. In vivo, co-injection of pancreatic stellate cells increased the size of the tumor developed by the control SUIT-2 cells, but the effects were less evident when pyruvate kinase isozyme M2 was knocked down in SUIT-2 cells or pancreatic stellate cells. Our results suggested a critical role of pyruvate kinase isozyme M2 in the interaction between pancreatic cancer cells and pancreatic stellate cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.