Abstract

Pyruvate dehydrogenase (PDH) kinases (PDKs) 1-4, expressed in peripheral and central tissues, regulate the activity of the PDH complex (PDC). The PDC is an important mitochondrial gatekeeping enzyme that controls cellular metabolism. The role of PDKs in diverse neurological disorders, including neurometabolic aberrations and neurodegeneration, has been described. Implications for a role of PDKs in inflammation and neurometabolic coupling led us to investigate the effect of genetic ablation of PDK2/4 on nociception in a mouse model of acute inflammatory pain. Deficiency in Pdk2 and/or Pdk4 in mice led to attenuation of formalin-induced nociceptive behaviors (flinching, licking, biting, or lifting of the injected paw). Likewise, the pharmacological inhibition of PDKs substantially diminished the nociceptive responses in the second phase of the formalin test. Furthermore, formalin-provoked paw edema formation and mechanical and thermal hypersensitivities were significantly reduced in Pdk2/4-deficient mice. Formalin-driven neutrophil recruitment at the site of inflammation, spinal glial activation, and neuronal sensitization were substantially lessened in the second or late phase of the formalin test in Pdk2/4-deficient animals. Overall, our results suggest that PDK2/4 can be a potential target for the development of pharmacotherapy for the treatment of acute inflammatory pain. © 2016 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call