Abstract

During the drug development process, organ toxicity leads to an estimated failure of one-third of novel chemical entities. Drug-induced toxicity is increasingly associated with mitochondrial dysfunction, but identifying the underlying molecular mechanisms remains a challenge. Computational modeling techniques have proven to be a good tool in searching for drug off-targets. Here, we aimed to identify mitochondrial off-targets of the nephrotoxic drugs tenofovir and gentamicin using different in silico approaches (KRIPO, ProBis and PDID). Dihydroorotate dehydrogenase (DHODH) and pyruvate dehydrogenase (PDH) were predicted as potential novel off-target sites for tenofovir and gentamicin, respectively. The predicted targets were evaluated in vitro, using (colorimetric) enzymatic activity measurements. Tenofovir did not inhibit DHODH activity, while gentamicin potently reduced PDH activity. In conclusion, the use of in silico methods appeared a valuable approach in predicting PDH as a mitochondrial off-target of gentamicin. Further research is required to investigate the contribution of PDH inhibition to overall renal toxicity of gentamicin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.