Abstract

BackgroundThe pyruvate dehydrogenase complex (PDC) catalyzes the irreversible decarboxylation of pyruvate into acetyl-CoA. PDC deficiency can be caused by alterations in any of the genes encoding its several subunits. The resulting phenotype, though very heterogeneous, mainly affects the central nervous system. The aim of this study is to describe and discuss the clinical, biochemical and genotypic information from thirteen PDC deficient patients, thus seeking to establish possible genotype–phenotype correlations.ResultsThe mutational spectrum showed that seven patients carry mutations in the PDHA1 gene encoding the E1α subunit, five patients carry mutations in the PDHX gene encoding the E3 binding protein, and the remaining patient carries mutations in the DLD gene encoding the E3 subunit. These data corroborate earlier reports describing PDHA1 mutations as the predominant cause of PDC deficiency but also reveal a notable prevalence of PDHX mutations among Portuguese patients, most of them carrying what seems to be a private mutation (p.R284X). The biochemical analyses revealed high lactate and pyruvate plasma levels whereas the lactate/pyruvate ratio was below 16; enzymatic activities, when compared to control values, indicated to be independent from the genotype and ranged from 8.5% to 30%, the latter being considered a cut-off value for primary PDC deficiency. Concerning the clinical features, all patients displayed psychomotor retardation/developmental delay, the severity of which seems to correlate with the type and localization of the mutation carried by the patient. The therapeutic options essentially include the administration of a ketogenic diet and supplementation with thiamine, although arginine aspartate intake revealed to be beneficial in some patients. Moreover, in silico analysis of the missense mutations present in this PDC deficient population allowed to envisage the molecular mechanism underlying these pathogenic variants.ConclusionThe identification of the disease-causing mutations, together with the functional and structural characterization of the mutant protein variants, allow to obtain an insight on the severity of the clinical phenotype and the selection of the most appropriate therapy.

Highlights

  • The pyruvate dehydrogenase complex (PDC) catalyzes the irreversible decarboxylation of pyruvate into acetyl-CoA

  • PDC, which irreversibly decarboxylates pyruvate to acetyl coenzyme A, comprises three functional (E1 or pyruvate dehydrogenase, E2 or dihydrolipoamide transacetylase, and E3 or dihydrolipoyl dehydrogenase) and one structural (E3BP or E3 binding protein, formerly designated by protein X) components, and the regulatory PDC kinases and PDC phosphatases, which control the complex activity via phosphorylation/dephosphorylation [3]

  • Patients were suspected to be PDC deficient based on clinical signs /symptoms and biochemical data, namely elevated plasma lactate (L) and pyruvate (P) levels with low L/P ratio and/or impaired PDC activity, but only those with genetic confirmation were considered in this study

Read more

Summary

Introduction

The pyruvate dehydrogenase complex (PDC) catalyzes the irreversible decarboxylation of pyruvate into acetyl-CoA. PDC deficiency can be caused by alterations in any of the genes encoding its several subunits. Pyruvate dehydrogenase complex (PDC) deficiency, first described in 1970 by Blass et al [1], is an inborn error of mitochondrial energy metabolism. PDC, which irreversibly decarboxylates pyruvate to acetyl coenzyme A, comprises three functional (E1 or pyruvate dehydrogenase, E2 or dihydrolipoamide transacetylase, and E3 or dihydrolipoyl dehydrogenase) and one structural (E3BP or E3 binding protein, formerly designated by protein X) components, and the regulatory PDC kinases and PDC phosphatases, which control the complex activity via phosphorylation/dephosphorylation [3]. The great majority (≈ 77%) of patients with PDC deficiency harbor mutations in the X-linked PDHA1 gene which encodes the E1α subunit. The remaining cases are caused by mutations in the genes encoding the remaining subunits: PDHB encoding E1β (4.3%), DLAT encoding E2 (1.5%), DLD encoding E3 (6.2%) and PDHX encoding E3BP (10.7%) [6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call