Abstract

In Saccharomyces cerevisiae, the structural genes PDC1, PDC5 and PDC6 each encode an active pyruvate decarboxylase. Replacement mutations in these genes were introduced in a homothallic wild-type strain, using the dominant marker genes APT1 and Tn5ble. A pyruvate-decarboxylase-negative (Pdc−) mutant lacking all three PDC genes exhibited a three-fold lower growth rate in complex medium with glucose than the isogenic wild-type strain. Growth in batch cultures on complex and defined media with ethanol was not impaired in Pdc− strains. Furthermore, in ethanol-limited chemostat cultures, the biomass yield of Pdc− and wild-type S. cerevisiae were identical. However, Pdc− S. cerevisiae was unable to grow in batch cultures on a defined mineral medium with glucose as the sole carbon source. When aerobic, ethanol-limited chemostat cultures (D = 0·10 h−1) were switched to a feed containing glucose as the sole carbon source, growth ceased after approximately 4 h and, consequently, the cultures washed out. The mutant was, however, able to grow in chemostat cultures on mixtures of glucose and small amounts of ethanol or acetate (5% on a carbon basis). No growth was observed when such cultures were used to inoculate batch cultures on glucose. Furthermore, when the mixed-substrate cultures were switched to a feed containing glucose as the sole carbon source, wash-out occurred. It is concluded that the mitochondrial pyruvate dehydrogenase complex cannot function as the sole source of acetyl-CoA during growth of S. cerevisiae on glucose, neither in batch cultures nor in glucose-limited chemostat cultures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call