Abstract

Mono(2-ethylhexyl) phthalate (MEHP) is the main metabolite of di(2-ethylhexyl) phthalate (DEHP) in organisms and is commonly used as a plasticizer. Exposure to DEHP impairs the function of islet beta cells (INS-1 cells), which is related to insulin resistance and type 2 diabetes. At present, some research data have also confirmed that MEHP has a certain damage effect on INS-1 cells. In our experiment, we found that MEHP would lead to the increase of reactive oxygen species (ROS) and the upregulation of autophagy. And downregulated ROS production by N-acetyl-L-cysteine could also reduce autophagy. In addition, MEHP-induced lysosomal membrane permeability (LMP) subsequently released cathepsin D. Additionally, MEHP induced the collapse of mitochondrial transmembrane potential and release of cytochrome c. Addition of autophagy inhibitor 3-methyladenine relieved MEHP-induced apoptosis as assessed by the expression of cleaved caspase 3, cleaved caspase 9, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay, indicating that MEHP-induced apoptosis was autophagy dependent. Cathepsin D inhibitor, pepstatin A, suppressed MEHP-induced mitochondria release of cytochrome c and apoptosis as well. Meanwhile, pyrroloquinoline quinone (PQQ), a new B vitamin, improved the above phenomenon. Taken together, our results indicate that MEHP induces autophagy-dependent apoptosis in INS-1 cells by lysosomal-mitochondrial axis. PQQ improved this process by downregulating ROS and provided a degree of protection. Our study provides a new perspective for MEHP on the cytotoxic mechanism and PQQ protection in INS-1 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.