Abstract

Pyrrolo[1,2-a]benzimidazole(PBI)-based aziridinyl quinones cleave DNA under reducing conditions specifically at G + A bases without any significant cleavage at C + T bases. The postulated mechanisms involve phosphate alkylation by the reductively activated aziridine to afford a hydrolytically labile phosphotriester as well as the classic N(7) purine alkylation followed by depurination and backbone cleavage. Evidence is presented that the phosphate alkylation mechanism could contribute. The PBIs possess a unique spectrum of cytotoxicity against cancer cells (inactive against leukemia but active against nonsmall cell lung, colon, CNS, melanoma, ovarian, and renal cancers). Also reported are results of in vivo antitumor activity screens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.