Abstract
Pyrrolizidine alkaloids (PAs) are a structurally diverse group of heterocyclic specialized metabolites characterized by a core structure comprising a hexahydro-1H-pyrrolizine. PAs are synthesized through two main pathways. In plants, assembly occurs via a homospermidine synthase, and in bacteria, through combined action of a nonribosomal peptide synthetase and a Baeyer-Villiger monooxygenase. While the toxic properties of plant-derived PAs and their prevalence in animal and human foods have been extensively studied, the biological roles and biosynthesis of more complex bacterial PAs are not well understood. Here, we report the identification and characterization of a bacterial biosynthetic gene cluster from Xenorhabdus hominickii, xhpA-G, which is responsible for producing the PA pseudo-dimer pyrrolizwilline. Analysis of X. hominickii promoter exchange mutants together with heterologous expression of xhpA-G in E. coli, revealed a set of pathway intermediates, two of which were chemically synthesized, as well as multiple derivatives. This information was leveraged to propose a detailed biosynthetic pathway to pyrrolizwilline. Furthermore, we have characterized the hydrolase XhpG, the key enzyme in the conversion of the pathway intermediate pyrrolizixenamide to pyrrolizwilline, using X-ray crystallography and small-angle X-ray scattering (SAXS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.