Abstract
BackgroundMultiple myeloma (MM) remains an incurable cancer despite advances in therapy. Therefore, the search for new targets is still essential to uncover potential treatment strategies. Metabolic changes, induced by the hypoxic bone marrow, contribute to both MM cell survival and drug resistance. Pyrroline-5-carboxylate reductase 1 and 2 (PYCR1 and PYCR2) are two mitochondrial enzymes that facilitate the last step in the glutamine-to-proline conversion. Overexpression of PYCR1 is involved in progression of several cancers, however, its’ role in hematological cancers is unknown. In this study, we investigated whether PYCR affects MM viability, proliferation and response to bortezomib.MethodsCorrelation of PYCR1/2 with overall survival was investigated in the MMRF CoMMpass trial (653 patients). OPM-2 and RPMI-8226 MM cell lines were used to perform in vitro experiments. RPMI-8226 cells were supplemented with 13C-glutamine for 48 h in both normoxia and hypoxia (< 1% O2, by chamber) to perform a tracer study. PYCR1 was inhibited by siRNA or the small molecule inhibitor pargyline. Apoptosis was measured using Annexin V and 7-AAD staining, viability by CellTiterGlo assay and proliferation by BrdU incorporation. Differential protein expression was evaluated using Western Blot. The SUnSET method was used to measure protein synthesis. All in vitro experiments were performed in hypoxic conditions.ResultsWe found that PYCR1 and PYCR2 mRNA expression correlated with an inferior overall survival. MM cells from relapsed/refractory patients express significantly higher levels of PYCR1 mRNA. In line with the strong expression of PYCR1, we performed a tracer study in RPMI-8226 cells, which revealed an increased conversion of 13C-glutamine to proline in hypoxia. PYCR1 inhibition reduced MM viability and proliferation and increased apoptosis. Mechanistically, we found that PYCR1 silencing reduced protein levels of p-PRAS40, p-mTOR, p-p70, p-S6, p-4EBP1 and p-eIF4E levels, suggesting a decrease in protein synthesis, which we also confirmed in vitro. Pargyline and siPYCR1 increased bortezomib-mediated apoptosis. Finally, combination therapy of pargyline with bortezomib reduced viability in CD138+ MM cells and reduced tumor burden in the murine 5TGM1 model compared to single agents.Conclusions This study identifies PYCR1 as a novel target in bortezomib-based combination therapies for MM.
Highlights
Multiple myeloma (MM) remains an incurable cancer despite advances in therapy
We aimed to evaluate the impact of hypoxia on proline metabolism and whether this pathway plays a role in myeloma viability and drug resistance
PYCR1 and PYCR2 overexpression is associated with adverse overall survival in myeloma patients Assessing the CoMMpass trial, we found that both high mRNA expression of PYCR1 and PYCR2 is associated with a significantly shorter overall survival (Fig. 1A)
Summary
Multiple myeloma (MM) remains an incurable cancer despite advances in therapy. Metabolic changes, induced by the hypoxic bone marrow, contribute to both MM cell survival and drug resistance. Multiple myeloma (MM) is the second most common hematological cancer, characterized by the accumulation of monoclonal plasma cells in the bone marrow (BM) [1]. Myeloma remains an incurable cancer due to accumulating toxicities and evolvement of functional drug resistance. Bortezomib remains a key drug in the treatment of myeloma since its FDA approval in 2003. Both newly diagnosed and relapsed/refractory patients are treated with this proteasome inhibitor, which generates high response rates [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental & Clinical Cancer Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.