Abstract

The rapid rise in antibiotic-resistant Gram-positive bacterial infections prompted us to explore the development of novel strategies for synthesis of large chemical libraries amenable to high-throughput screening for antimicrobial activities. Here we report the solid-phase synthesis of a 738,192 member pyrrolidine bis-cyclic guanidine chemical library with 26 different amino acids at three positions of diversity and 42 carboxylic acids at the fourth position. This synthetic combinatorial library was developed for positional scanning and screened for bacteriostatic and bactericidal activities against the important human pathogen methicillin-resistant Staphylococcus aureus (MRSA). The eight compound mixtures exhibiting bactericidal activity (10 μg/mL) against MRSA were used to direct the synthesis of 36 individual compounds that were then screened for activity against MRSA, vancomycin-resistant Enterococcus faecalis (VRE), and two Gram-negative bacterial species. At least 20 individual compounds were bactericidal for MRSA at ⩽2.5 μg/mL, with a subset of these compounds showing bactericidal activities (⩽10 μg/mL) against the other species tested. This approach demonstrates the capability to synthesize and screen a complex library to yield promising antimicrobials that address a critical need for novel infectious disease therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.