Abstract

A new set of catalytic materials having a pyrrolidine moiety confined in microporous organic polymer networks (POPs) has been attained. These catalytic polymers have been prepared by a straightforward synthesis starting from microporous polymer networks made from isatin (or a mixture of isatin and trifluoroacetophenone) and 1,3,5-triphenylbenzene. The polymers efficiently catalyzed the formation of nitrones under very mild and sustainable conditions using green solvents through an iminium ion activation mechanism. The reactions are scalable, and polymers are easily recycled. Special attention has been paid to understanding all the factors that could affect the efficiency of the confined catalysts. The electronic and conformational characteristics of the pyrrolidine moiety attached to the porous polymers, as well as other features that could affect the transport through the network, such as molecular volume and shape of reactants and products, and even hydrophilic or hydrophobic properties, have been systematically evaluated. In addition, the heterogeneous polymers are also useful in CC bond formation through both iminium ion and enamine activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call