Abstract

The Red Hill complex, New Hampshire, contains both silica-undersaturated and silica-saturated to oversaturated syenites. Ion microprobe analyses of pyroxene from the Nepheline Sodalite Syenite (NSS) and its enclaves reveal that the REE abundances increase in a systematic manner from low values in the enclave pyroxenes to higher values in the NSS host rock pyroxenes. This variation is interpreted to have resulted from differentiation and coupled with previously published mineral and bulk-rock compositions, suggests that the enclaves represent samples of NSS parental liquids that intruded into residual, syenitic liquids in a zoned magma chamber. Pyroxene analyses of the Garland Peak Syenite (GPS) and its enclaves indicate that the enclaves are of several populations: some may be related to the GPS, others are not. The GPS itself is heterogeneous and pyroxene trace element zoning is difficult to explain by fractionation processes. The silica-oversaturated Outer Coarse Syenite (OCS) contains pyroxenes with trace element characteristics that are distinct from the NSS. The low V concentrations suggest that the OCS exprienced magnetite fractionation prior to pyroxene growth. It is proposed that high f O2in the OCS magma caused Fe-Ti oxide crystallization, which in turn, influenced magmatic silica activity. The chondrite normalized REE patterns of OCS pyroxenes are also suggestive of titanite crystallization, another indication of high f O2. In contrast to the influence of magnetite crystallization, the high and rimwardly increasing Y and Yb concentrations in both the NSS and the OCS pyroxenes suggest that amphibole fractionation was not the major influence on silica activity. Therefore, it is unlikely that the OCS was derived by amphibole fractionation from a NSS precursor magma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call