Abstract

It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional) and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat) was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada’s oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation.

Highlights

  • It has long been recognized that maintaining biodiversity of soil microbes is crucial to soil health, which has been defined as soil with the capacity of resilience to stress, sustaining high biological diversity, productivity and high level of internal nutrient cycling, maintaining environmental quality and promoting plant health [1,2]

  • Our studies demonstrated that Proteobacteria and Actinobacteria were more sensitive to pH variation than other bacterial phyla

  • We demonstrated that different farming practices significantly changed the relative abundances of Proteobacteria and Actinobacteria

Read more

Summary

Introduction

It has long been recognized that maintaining biodiversity of soil microbes is crucial to soil health, which has been defined as soil with the capacity of resilience to stress, sustaining high biological diversity, productivity and high level of internal nutrient cycling, maintaining environmental quality and promoting plant health [1,2]. Bacterial communities are responsible for multifaceted biological functions in soils [3,4,5], and exert an important role in maintaining plant health [6,7,8,9,10]. Conventional agricultural management practices have involved the use of artificial chemical fertilizers and pesticides to increase crop yields. This has led to severe environmental problems such as soil degradation, emission and leaching of fertilizer and pesticide, and the emergence of pesticide resistant species [16,17], resulting in an unsustainable practice [18]. The aim in sustainable management systems is to maintain the biological function of the soil and to promote plant health. Organic farming systems may have a strong potential for restoring soil health and increase agro-ecosystem resilience to stress [18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call