Abstract

Soft tissue calcification occurs in several common acquired pathologies, such as diabetes and hypercholesterolemia, or can result from genetic disorders. ABCC6, a transmembrane transporter primarily expressed in liver and kidneys, initiates a molecular pathway inhibiting ectopic calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into pyrophosphate (PPi), a major calcification inhibitor. Heritable mutations in ABCC6 underlie the incurable calcification disorder pseudoxanthoma elasticum and some cases of generalized arterial calcification of infancy. Herein, we determined that the administration of PPi and the bisphosphonate etidronate to Abcc6-/- mice fully inhibited the acute dystrophic cardiac calcification phenotype, whereas alendronate had no significant effect. We also found that daily injection of PPi to Abcc6-/- mice over several months prevented the development of pseudoxanthoma elasticum-like spontaneous calcification, but failed to reverse already established lesions. Furthermore, we found that the expression of low amounts of the human ABCC6 in liver of transgenic Abcc6-/- mice, resulting in only a 27% increase in plasma PPi levels, led to a major reduction in acute and chronic calcification phenotypes. This proof-of-concept study shows that the development of both acute and chronic calcification associated with ABCC6 deficiency can be prevented by compensating PPi deficits, even partially. Our work indicates that PPi substitution represents a promising strategy to treat ABCC6-dependent calcification disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.