Abstract

In plants, pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) is a regulatory enzyme that participates in glycolysis and gluconeogenesis. Arabidopsis contains two PFPα subunit genes (PFPα1 and PFPα2) and two PFPβ subunit genes (PFPβ1 and PFPβ2). The single-knockout mutants of the PFP subunit genes were isolated, and double and quadruple pfp mutants were generated by crossing the single mutants. To elucidate the role of PFP in stress tolerance, the responses of the double and quadruple pfp knockout mutants to stress conditions, including osmotic and salt stresses, were examined. The seedling growth of the pfpα1/α2 and pfpβ1/β2 double mutants and the pfpα1/α2/β1/β2 quadruple mutant was severely retarded under salt and osmotic stress conditions compared with that of the wild type. The expression of PFP subunit genes increased in response to salt and osmotic stresses. In contrast, the vegetative growth of the wild type and pfp mutants after the seedling stage was similarly affected by salt and osmotic stresses. These findings suggest that PFP plays a role in the adaptation of Arabidopsis seedlings to salt and osmotic stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.