Abstract

Organic energy storage materials attract extensive attention as a potential alternative for the next generation of lithium ion batteries. However, most of the reported organic electrodes can not achieve a good balance among high capacity, high rate and long cycle-life. In this work, pyromellitic anhydride is adopted as a new anode material for lithium-ion batteries. It exhibits superior electrochemical performances compared to most of the reported organic electrodes. The pyromellitic anhydride anode is able to reversibly deliver a capacity of 1472.2 mAh g−1 at 30 mA g−1. Even at an extremely high current of 30 A g−1, the electrode still retains 562.7 mAh g−1. After a 500 electrochemical cycles at 150 mA g−1 charge and 600 mA g−1 discharge, almost no capacity loss can be observed. The good electrochemical performance of the pyromellitic anhydride anode is because of its excellent lithium conductivity capability, as well as the stable solid electrolyte interface film formed on the electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.