Abstract

The co-production of bio-char and upgraded bio-oil by fast pyrolysis of raw and sulfuric-acid pretreated agro-industrial wastes (corn cob, sugarcane bagasse and sunflower seed hull) was investigated to valorize wastes as sources of value-added products (VAPs) following the circular bio-economy system. To this end, proximate and elemental analyses were performed, and adsorption properties were determined in pyrolysis products. Bio-char and bio-oil yields from raw wastes ranged 28–33% and 30–35%, respectively. For all wastes, acid pretreatment increased the solid fraction and caused a reduction of the liquid one, compared to untreated wastes. Pyrolysis of raw wastes led to the co-production of bio-chars and bio-oils with different applications. Bio-chars could be put in for soil amendment, primarily due to high ashes concentration, mesoporosity, and elevated cation exchange capacity; whereas, bio-oils could be upgraded by water addition, leading to a source for carrying out reforming reactions in the context of hydrogen production. Properties of bio-chars from acid washed biomasses enabled them for pollutant remediation, due to their high specific surface and microporosity features. The corresponding bio-liquid was a stable-to-storage material, being a practical source of furfural. These findings emphasize that lignocellulosic wastes can be envisaged as starting materials for producing VAPs via pyrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call