Abstract

Pyrolysis of used sunflower oil was carried out in a reactor equipped with a fractionating packed column (in three different lengths of 180, 360 and 540 mm) at 400 and 420°C in the presence of sodium carbonate (1, 5, 10 and 20% based on oil weight) as a catalyst. The use of packed column increased the residence times of the primer pyrolysis products in the reactor and packed column by the fractionating of the products which caused the additional catalytic and thermal reactions in the reaction system and increased the content of liquid hydrocarbons in gasoline boiling range. The conversion of oil was high (42–83 wt.%) and the product distribution was depended strongly on the reaction temperature, packed column length and catalyst content. The pyrolysis products consisted of gas and liquid hydrocarbons, carboxylic acids, CO, CO 2, H 2 and water. Increase in the column length increased the amount of gas and coke–residual oil and decreased the amount of liquid hydrocarbon and acid phase. Also, increase of sodium carbonate content and the temperature increased the formation of liquid hydrocarbon and gas products and decreased the formation of aqueous phase, acid phase and coke–residual oil. The major hydrocarbons of the liquid hydrocarbon phase were C 5–C 11 hydrocarbons. The highest C 5–C 11 yields (36.4%) was obtained by using 10% Na 2CO 3 and a packed column of 180 mm at 420°C. The gas products included mostly C 1–C 3 hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.