Abstract

Pyrolysis of physic nut residues was conducted under isothermal and dynamic heating conditions in a vertical fixed bed type reactor at final temperature of 500, 700 and 900°C under N2. The solid, liquid, and gas products were in the ranges of 26.94-29.04, 9.43-21.36, 51.70-61.54 wt% for slow pyrolysis, while those attained from rapid condition were 11.16-15.25, 15.00-23.43, and 61.3273.84 wt%, respectively. Results indicated that char decreased with increasing temperature and hold time. Char with highest fixed carbon of 85.32% with relatively low volatiles of 9.28% was obtained by pyrolysis at 900°C for 60 min. Release of volatile matter led to development of char porous structure. The maximum liquid product of 21.35% was observed at the pyrolysis temperature of 900°C for 60 min under dynamic heating and 61.54% under isothermal heating at 500°C. Decreasing hold time to 15 min caused 2 times decrease of liquid yields. The liquid product mainly consisted of several fatty acids such as oleic acid, palmitic acid and lignoleic acid in the range of 15-19%, 40-45%, and 2534%, respectively. Increase in temperature and hold time lead to greater production of hydrogen, carbon monoxide, and light hydrocarbons. Mode of heating displayed significant effect to the product distribution, LHV and H2/CO ratio. Higher LHV values were obtained at 900°C under rapid pyrolysis condition. Mole ratio of H2/CO close to unity was found in the case of pyrolysis at 900°C for both slow and rapid trials. The LHV obtained from slow processes were 7.8-15.0 MJ/Nm while those from rapid runs were 14.8-17.2 MJ/Nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.