Abstract

AbstractHigh‐temperature pyrolysis of natural gas is the basis of the standard method for the manufacture of acetylene. The study of methane pyrolysis was designed to find optimum process conditions that would produce high yields of acetylene with minimal carbon formation. High temperatures and short residence times enhanced the selectivity for acetylene, while hydrogen dilution was found to suppress the generation of carbonous products. Carbon formation on reactor surfaces over time may be mainly responsible for the misalignment of predicted and measured product gas compositions, as the mechanisms reported do not consider the surface chemistry. In essence, the pyrolysis system favors the highest possible temperature and shortest possible residence time, suggesting that the selection of reactor materials is the key for pyrolysis process optimization. The operating temperature is likely dictated by the physical properties of the reactor materials rather than the selection of optimal pyrolysis conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.