Abstract

Design and synthesis of highly active and durable electrocatalysts toward oxygen reduction reaction (ORR) is of particular importance for proton exchange membrane fuel cells (PEMFCs), yet remains a grand challenge. Herein, we report the deposition of iron (III) porphyrin (FeP) on house-made Pt/C by rotary evaporation of the mixture of FeP and house-made Pt/C dispersed in chloroform, followed by pyrolysis at 650 °C in argon atmosphere. This approach led to the synthesis of new non-precious metal electrocatalyst (NPME)-Pt/C composites (Pt/C–FeP) with an average nanoparticle diameter of 3.1 ± 1.5 nm without aggregation. According to X-ray photoelectron spectroscopy (XPS), the binding energy of Pt 4f7/2 became larger due to the presence of pyrolyzed FeP. In addition, the electrochemically active surface area (ECSA) of Pt/C–FeP-650 is 65 m2/g less than that of house-made Pt/C (80.2 m2/g). This implies that the pyrolyzed FeP may have partially covered the surface of Pt nanoparticles and thus lowering the ECSA. Interestingly, the mass activity (MA) of Pt/C–FeP turns out to be 349.0 mA/mgPt @0.9 V vs. RHE, which is 2.6 times and 1.5 times of house-made Pt/C and commercial Pt/C, respectively. It is speculated that the electronic interaction and possible synergy between Pt and pyrolyzed FeP as NPME might have contributed to the ORR activity improvement despite of partial loss of ECSA. During accelerated durability tests (ADTs), the MA of Pt/C–FeP-650 degrades 64.3% inferior to commercial Pt/C (52.2%). The main reason likely arises from the degradation of pyrolyzed FeP, which is a bottleneck problem confronting NPMEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call