Abstract

AbstractDesigning energy storage devices from thick carbon electrodes with high areal/volumetric energy density via a simple and green way is very attractive but still challenging. Cellulose, as an excellent precursor for thick carbon electrodes with abundant sources and low cost, is usually activated by a chemical activator and pyrolysis route to achieve high electrochemical performance. However, there are still some problems to be addressed, such as the harsh activation conditions, easy collapse of porous structures, and the high cost. Herein, a 3D self‐supporting thick carbon electrode derived from wood‐based cellulose is proposed for high areal and volumetric energy density of supercapacitor from a mild, simple, and green enzymolysis treatment. Benefiting from the high specific surface area (1418 m2 g−1) and abundant active sites on the surface of wood‐derived hierarchically porous structures and enzymolysis‐induced micropores and mesopores, the assembled symmetry supercapacitor from the thick carbon electrode can realize the high areal/volumetric energy density of 0.21 mWh cm−2/0.99 mWh cm−3 with excellent stability of 86.58% after 15 000 long‐term cycles at 20 mA cm−2. Significantly, the simple and universal strategy to design material with high specific surface area, provides a new research idea for realizing multi‐functional application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.