Abstract
In this study, Fenton-like catalysts (magnetic biochar) were synthesised by pyrolysis the different biomass pre-impregnated with steel pickling waste liquor. The results of degradation of metronidazole illustrated that the catalytic performance of magnetic biochar was significantly affected by biomass feedstocks. Electron spin resonance (ESR) and radical quenching experiments showed that the hydroxide radicals (OH) were the key reactive oxygen species responsible for the metronidazole removal. Levels of OH varied among different systems consistent with the removal of metronidazole. The activation of H2O2 by carbon-containing components and Fe species (Fe2O3 and Fe3O4) in magnetic biochar were confirmed to be less crucial to the degradation of metronidazole. Moreover, the Fe(II) (FeO) in magnetic biochar played the dominating role in degradation of metronidazole, and the Fe(II) content difference caused by biomass feedstocks was responsible for differences in the catalytic performance of different types of magnetic biochar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.