Abstract

Shock-tube and flow-reactor experiments were used to study the thermal decomposition of diethyl carbonate (C2H5OC(O)OC2H5; DEC). The formation of CO2, C2H4, and C2H5OH was measured with gas chromatography/mass spectrometry (GC/MS) and high-repetition-rate time-of-flight mass spectrometry (HRR-TOF-MS) behind reflected shock waves. The same products were also detected by GC/MS in flow reactor experiments. All experiments combined span a temperature range of 663–1203 K at pressures between 1.0 and 2.0 bar. Time-resolved species concentration profiles from HRR-TOF-MS and product compositions from GC/MS measurements were simulated applying a detailed reaction mechanism for DEC combustion. A master-equation analysis was conducted based on computed energies from G4 calculations. Quantum chemical calculations confirm that DEC primarily decomposes by six-center elimination, C2H5OC(O)OC2H5 → C2H4 + C2H5OC(O)OH (1a), followed by rapid decomposition of the alkoxy acid, C2H5OC(O)OH → C2H5OH + CO2(1b). Measured DEC decomposition rate constants k(T) at p ≈ 1.5 bar can be represented by the Arrhenius equation k(T) = 1013.64±0.12 exp(−204.24±1.95 kJ/mol/RT) s − 1. Theoretical predictions for k1a were in good agreement with experimentally derived values. The theoretical analysis also included dipropyl carbonate (C3H7OC(O)OC3H7; DPC) decomposition and the reactivities of DEC and DPC are compared and discussed in the context of reactivity of dialkyl carbonates under pyrolytic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.