Abstract

The coke formation is crucial to the crude oil in situ combustion (ISC) process. This study provided some insights through analyzing the influences of temperature and reaction atmosphere on the coke chemical–structural property. Thin coke films were produced on the polished single-crystal Si surface from the Xinjiang crude oil. Their functional groups were compared by Fourier transform infrared spectroscopy (FTIR), while the nanostructures were characterized through Raman spectroscopy, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM) techniques. In addition, the low-temperature oxidation (LTO) coke and the pyrolytic coke reactivities were investigated by thermogravimetric analyses. The results indicated that the main carbon structures in the pyrolytic coke were amorphous. No crystallization phenomena, such as the aromatic ring condensation and the planar stacking, were observed within the characteristic ISC pyrolytic temperature range. Despite the pyrolytic coke yield ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.