Abstract

1-Butyl-2,3-dimethylimidazolium nitrate ([Bmmim][NO3]) is a functionality ionic liquid extensively used in industrial field. Under thermal disturbance scenarios or special high temperature conditions, [Bmmim][NO3] may cause serious safety accidents due to thermal decomposition. To understand the thermal hazard characteristics and pyrolysis mechanism of [Bmmim][NO3] more comprehensively, then determine the intrinsic reasons leading to its thermal hazard. In this paper, the thermal hazard characteristics of [Bmmim][NO3] have been studied with differential scanning calorimetry, thermogravimetric analyzer and accelerating rate calorimeter. Thermal decomposition parameters, thermal safety parameters and decomposition reaction model of [Bmmim][NO3] were obtained based on experimental results. The microscopic mechanism of [Bmmim][NO3] pyrolysis was investigated using gas chromatography-mass spectrometer (GC–MS), thermogravimetry-flourier transform infrared spectroscopy (TG-FTIR), thermogravimetric-photoionization mass spectrometry (TG-MS), and quantum-chemical density functional theory (DFT) simulation. HCN, CO2, C2H6, HCHO, and CH3OH were the main harmful gases produced in the process of [Bmmim][NO3] decomposition. In addition, the main reaction steps that result in the thermal hazard characteristics of [Bmmim][NO3] were identified. This study may provide guidance for enhancing its security application and reducing or controlling its related hazardous accidents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call