Abstract

Abstract Woody biomass can be converted into green fuels by advanced conversion technologies such as gasification and pyrolysis. Due to the complexity of woody biomass, the thermochemical decomposition mechanisms are complex and the knowledge of pyrolysis kinetics is mandatory for optimization of the process and reactor design of commercial scale biorefineries. Pyrolysis kinetics of short rotation coppice (SRC) poplar biomass (nine different clones) was studied using non-isothermal thermogravimetry. By using differential thermogravimetry data, obtained for heating rates of 10–50 K/min, the Kissinger model-free methodology showed activation energies in the range 108–320 kJ/mol, similar to those reported in the literature for cellulose pyrolysis. Isoconversional approaches of Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) obtained similar values of activation energy (81–301 kJ/mol and 90–306 kJ/mol, respectively. The kinetics parameters obtained by the FWO and KAS methods were higher than data reported in the literature for other biomasses, and a correlation between activation energy and the lignin content of the biomass samples was found. The pyrolysis activation energy seems to have no significant effect on the pyrolysis product yields, probably because, under the tested conditions (fixed bed reactor, 773 K), pyrolysis was controlled by mass and/or heat transfer limitations instead of kinetics control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.