Abstract

The green coconut (Cocus nucifera) is widely consumed in the world; however, its processing generates a large amount of waste, which presents a high energetic potential. The coconut waste is composed of skin, husk, and shell, where each part can be showing different physicochemical and thermal characteristics. Thus, this study presents the physicochemical and thermal characteristics of skin, husk, and shell of green coconut waste. The physicochemical behavior was evaluated by proximate analysis and ultimate analysis, while the thermal behavior was evaluated by thermogravimetric analysis under five different heating rates (5, 10, 15, 20, and 30 °C min−1). In addition, from the thermogravimetric data was evaluated the activation energy (Ea) by using Friedman and Ozawa–Flynn–Wall (OFW) methods. The physicochemical and thermal characteristics presented by each part of the coconut indicate that the material can be used completely due to the great similarity between the heating value of each part of the coconut (HHVskin = 18.98 MJ kg−1, HHVhusk = 18.15 MJ kg−1, and HHVshell = 18.64 MJ kg−1), although they different contents of moisture and ash. A different thermal behavior of each part of the coconut was also observed, being associated with the possibility of different components in its structures, which directly influences the Ea value. Based on the Ea values, the husk shows a better applicability for pyrolysis process, due to lower energy required per mol of biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.