Abstract

Biosolids have been long used as a soil amendment to promote nutrient recovery. The readily releasable forms of nutrients present in this biowaste, such as phosphorus (P), along with their over application, can be detrimental to the environment, causing eutrophication. Pyrolysis, the thermal decomposition of organic materials at elevated temperature and low oxygen, seems to be a promising strategy to lower P release from biowastes such as biosolids. We pyrolyzed biosolids from various treatments and locations (Florida and Illinois; Galicia, Spain; and São Paulo, Brazil) to convert to biochar. Our objectives were (a) to use solid-state assessments, such as X-ray diffraction and scanning electron microscopy, and chemical assessments, such as water-soluble P (WSP), pH, Mehlich 3-extractable P (M3-P), total P (TP), and total Kjeldahl nitrogen, to evaluate changes caused by the conversion and (b) to compare P leaching potentials of biosolids and their corresponding biochars on two soils with varying P retention capacities. Pairwise comparisons indicated that biochar conversion significantly increased TP in the final material, but the absolute WSP decreased. However, M3-P remained the same after conversion to biochar. Cumulative P leached as a fraction of TP was greater for biosolids than their corresponding biochars. Two soils with contrasting P retention capacities predictably differed in P leaching behaviors as amended with biosolids and biochars. Differences suggest that future research could evaluate the efficacy of using mixtures of biosolids and biochar for a given soil to maintain soil fertility while reducing environmental P loss risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call