Abstract

Investigating the mechanisms that determine the bulk and position-specific carbon isotopic distributions of propane in natural gas will help elucidate its formation and evolution. We used octadecane and squalane as model compounds that give simple precursors for gas production in gold-tube isothermal pyrolysis experiments to study the variations in intermolecular and intramolecular distributions of isotopes in the generated gaseous hydrocarbons. The δ13C values of the products and inverses of their carbon numbers (1/n where n = C1–C5) showed a negative linear relationship versus maturity, indicating that they formed by homolytic cleavage of C–C bonds and that the precursors showed homogeneous distributions of carbon isotopes. However, the significant difference in the kinetic isotopic effects (KIEs) of the gas generated by cracking of two model compounds under the same experimental conditions is not readily explained by single homolytic bond cleavage. The results indicate that besides the KIE of C–C bond cleavage, the bulk and position-specific carbon isotopic compositions of propane are related to the chemical and isotopic structures of the precursors and the propane transformation ratio. Based on the sites of C–C bond cleavage, two isotopic fractionation patterns (i.e., normal propyl and isopropyl models) may explain the bulk and position-specific carbon isotopic distributions of the generated propane. According to the propyl model, propane originates from (normal) propyl structures (CH3CH2CH2*) in the precursor via C–C bond cleavage at a terminal site of a propyl group, while the isopropyl model involves propane derived from isopropyl structures (CH3CH*CH3) in the precursor, with C–C bond cleavage at the central site. Simulations show that these distributions for propane cracked from octadecane closely follow the propyl model, whereas propane generated from squalane showed mixed contributions from both models, and its bulk and position-specific carbon isotopic distributions depend on the proportions of propyl and isopropyl structures in the precursors. Variations of propane’s position-specific carbon isotopic distributions during the main stage of propane generation indicate that free radical reactions are the main pathway for thermogenic propane formation, resulting in similar KIEs for propane terminal and central carbons. Therefore, the position-specific carbon isotopic distribution of propane can provide evidence of its formation mechanism and shows potential for revealing the origin and evolution of natural gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call