Abstract

Detailed compositional analyses of sedimentary organic matter can provide information on its biotic input, environment of deposition, and level of thermal maturation. Pyrolysis-gas chromatography (py-GC), often coupled with a mass spectrometer (py-GC/MS), is one technique used to provide this information. New developments in comprehensive two-dimensional gas chromatography (GC x GC or 2D-GC), coupled with pyrolysis (py-GC x GC), offer the prospect of providing more complete and quantitative compositional information of complex organic solids, such as kerogen and coals. This study will describe applications of pyrolysis-GC x GC to the characterization of petroleum source rocks using flame ionization detector (FID) and sulfur chemiluminescence detector (SCD). In the hydrocarbon analysis by FID, paraffins, naphthenes, and aromatics form distinct two-dimensional separated groups. In the analysis with SCD, sulfur-containing compounds can be distinguished as different classes, such as mercaptans, sulfides, thiophenes, benzothiophenes, and dibenzothiophenes. Single components or summed bands of homologous components can be analyzed qualitatively and quantitatively. With these detailed molecular fingerprints, the relations between kerogen composition and its biotic input, environment of deposition, and thermal maturation may be better understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.